Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
J Behav Med ; 47(2): 334-341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180576

RESUMO

High-risk sexual behavior is the primary risk factor for the acquisition and persistence of human papillomavirus (HPV) infection and the development of HPV-associated diseases including cancer. Incidence of HPV infection is high among individuals in their late teens and early 20s. Thus, college students represent a historically high-risk group for HPV infection yet are also a group with the ability to independently access HPV vaccination for HPV prevention. To inform future interventions, we examined factors associated with HPV-associated risky sexual behaviors among sexually active college students. Data (N = 741) were from an anonymous online survey distributed to students at a public Midwestern university in 2021. The outcomes were HPV-associated sexual risk behaviors-number of oral or vaginal sexual partners [high (≥ 5) or low (< 5)] and age of oral or vaginal sexual debut [early (< 18 years) or late (≥ 18 years)]. Multivariable logistic regression models estimated the association between HPV-associated risky sexual behaviors and several predictors including age, gender, relationship status, academic level, country of birth, and rural-urban status. Among sexually active students, approximately 47% and 41% had a high number of lifetime vaginal and oral partners, respectively. Among the same group, 60% and 64% had early vaginal and oral sexual debut. Students who were single and dating (aOR = 1.93; 95% CI = 1.21, 3.08) or single and not dating (2.11; 1.28, 3.48) were more likely to have a high number of vaginal lifetime partners compared with married students. Single (vs. married) students were also about twice as likely to have a high number of oral lifetime partners. Relative to graduate students, freshmen/sophomores were more likely to have an early vaginal (2.44; 1.45, 4.11) and oral (2.14; 1.26, 3.63) sexual debut. Interventions tailored to college freshmen/sophomores and unmarried students should encourage students to receive the HPV vaccine for prevention of future HPV-associated diseases.


Assuntos
Infecções por Papillomavirus , Feminino , Adolescente , Humanos , Infecções por Papillomavirus/prevenção & controle , Comportamento Sexual , Parceiros Sexuais , Fatores de Risco , Estudantes , Assunção de Riscos
2.
An. R. Acad. Nac. Farm. (Internet) ; 89(4): 451-458, Oct-Dic, 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-229817

RESUMO

Objetivo: Evaluar la actividad antimicrobiana de la bebida de Kéfir contra Escherichia coli, Salmonella typhimurium y Shigella flexneri. Método: El kéfir utilizado en la investigación fue adquirido en Toluca, Estado de México. Se realizó una reactivación del kéfir con leche pasteurizada y se analizaron 3 carbohidratos (miel, azúcar y piloncillo) en diferentes concentraciones y tiempos, 80, 100, 120% y 24, 48 y 72 horas respectivamente. Los microorganismos cultivables aislados se caracterizaron por técnicas fenotípicas, bioquímicas y de espectroscopia de masas. El pH inicial y final se determinaron durante el tiempo de estudio. La actividad antimicrobiana se realizó extrayendo los metabolitos presentes en el fermento con el método de Kirby-Bauer, además se evaluó el fermento directo, para determinar si hubo inhibición con las cepas de Escherichia coli ATCC 11229, Salmonella typhimurium ATCC 14028 y Shigella flexneri ATCC 12022. Resultados: Se observó que en los tres carbohidratos utilizados a una concentración de 120% y en un tiempo de 72 h, fue donde se obtuvo un pH menor (3,51 a 3,64) comparado con su concentración inicial (6,50 a 6,64). A partir de los metabolitos extraídos en los diferentes fermentos, no se obtuvo halo de inhibición con las cepas analizadas. Sin embargo, al usar fermentos directos, se observó que en los carbohidratos utilizados (azúcar, miel, piloncillo) existía la presencia de un halo de inhibición o el crecimiento de colonias distintas de las evaluadas. Los microorganismos cultivables aislados fueron: Pichia kudriavzevii (levadura); Enterococcus sp (coco grampositivo) y Lactobacillus sp (bacilo grampositivo). Conclusiones: Los fermentos de kéfir hechos con diferentes carbohidratos, llegaron a presentar un grado de inhibición solo como un consorcio contra microorganismos Gram-negativos analizados.Palabras Clave: Kéfir; fermentación microbiota; infección; actividad antimicrobiana.(AU)


Objective: Evaluate the antimicrobial activity of the Kefir drink against Escherichia coli, Salmonella typhimurium and Shigella flexneri. Method: The Kefir used in the investigation was acquired in Toluca, State of Mexico. We performed a reactivation of Kefir with pasteurized milk and analyzed 3 carbohydrates (honey, sugar and piloncillo) at different concentrations and times, 80, 100, 120% and 24, 48 and 72 hours respectively. Isolated cultivable microorganisms were characterized by phenotypic, biochemical and mass spectroscopy techniques. The initial and final pH were determined during the study time. The antimicrobial activity was carried out by extracting the metabolites present in the ferment with the Kirby-Bauer method, in addition the direct ferment was evaluated, to determine if there was inhibition with the Escherichia coli (ATCC 11229) strains, Salmonella typhimurium (ATCC 14028) and Shigella flexneri (ATCC 12022). Results: It was observed that in the three carbohydrates used at a concentration of 120% and at a time of 72 h, a lower pH was obtained (3.51 to 3.64) compared to their initial concentration (6.50 to 6.64). From the metabolites extracted in the different ferments, no inhibition halo was obtained with the strains analyzed. However, when using direct ferments, it was observed that in the carbohydrates used (sugar, honey, piloncillo) there was the presence of an inhibiting halo or the growth of colonies other than those evaluated. The isolated cultivable microorganisms were: Pichia kudriavzevii (yeast); Enterococcus sp (gram-positive coconut) and Lactobacillus sp (gram-positive bacillus). Conclusions : Kefir ferments made with different carbohydrates, came to present a degree of inhibition only as a consortium against Gram-negative microorganisms analyzed.(AU)


Assuntos
Humanos , Masculino , Feminino , Shigella flexneri , Salmonella typhimurium , Escherichia coli , Kefir/microbiologia , Produtos com Ação Antimicrobiana , Microbiota , México , Microbiologia , Técnicas Microbiológicas
5.
BMC Bioinformatics ; 24(1): 205, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208611

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are covalently closed-loop RNAs with critical regulatory roles in cells. Tens of thousands of circRNAs have been unveiled due to the recent advances in high throughput RNA sequencing technologies and bioinformatic tools development. At the same time, polymerase chain reaction (PCR) cross-validation for circRNAs predicted by bioinformatic tools remains an essential part of any circRNA study before publication. RESULTS: Here, we present the CircPrime web-based platform, providing a user-friendly solution for DNA primer design and thermocycling conditions for circRNA identification with routine PCR methods. CONCLUSIONS: User-friendly CircPrime web platform ( http://circprime.elgene.net/ ) works with outputs of the most popular bioinformatic predictors of circRNAs to design specific circular RNA primers. CircPrime works with circRNA coordinates and any reference genome from the National Center for Biotechnology Information database).


Assuntos
RNA Circular , RNA , RNA Circular/genética , RNA/genética , Análise de Sequência de RNA/métodos , Reação em Cadeia da Polimerase , Biologia Computacional/métodos , Internet
6.
Sci Rep ; 13(1): 8060, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198208

RESUMO

Despite all efforts to combat the pandemic of COVID-19, we are still living with high numbers of infected persons, an overburdened health care system, and the lack of an effective and definitive treatment. Understanding the pathophysiology of the disease is crucial for the development of new technologies and therapies for the best clinical management of patients. Since the manipulation of the whole virus requires a structure with an adequate level of biosafety, the development of alternative technologies, such as the synthesis of peptides from viral proteins, is a possible solution to circumvent this problem. In addition, the use and validation of animal models is of extreme importance to screen new drugs and to compress the organism's response to the disease. Peptides derived from recombinant S protein from SARS-CoV-2 were synthesized and validated by in silico, in vitro and in vivo methodologies. Macrophages and neutrophils were challenged with the peptides and the production of inflammatory mediators and activation profile were evaluated. These peptides were also inoculated into the swim bladder of transgenic zebrafish larvae at 6 days post fertilization (dpf) to mimic the inflammatory process triggered by the virus, which was evaluated by confocal microscopy. In addition, toxicity and oxidative stress assays were also developed. In silico and molecular dynamics assays revealed that the peptides bind to the ACE2 receptor stably and interact with receptors and adhesion molecules, such as MHC and TCR, from humans and zebrafish. Macrophages stimulated with one of the peptides showed increased production of NO, TNF-α and CXCL2. Inoculation of the peptides in zebrafish larvae triggered an inflammatory process marked by macrophage recruitment and increased mortality, as well as histopathological changes, similarly to what is observed in individuals with COVID-19. The use of peptides is a valuable alternative for the study of host immune response in the context of COVID-19. The use of zebrafish as an animal model also proved to be appropriate and effective in evaluating the inflammatory process, comparable to humans.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Peixe-Zebra , Macrófagos , Peptídeos
7.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047078

RESUMO

Although the exact mechanism of the pathogenesis of coronavirus SARS-CoV-2 (COVID-19) is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the level of inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red photobiomodulation (PBM) as an attractive therapy to downregulate the cytokine storm caused by COVID-19 in a zebrafish model. RT-qPCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that recombinant Spike protein (rSpike) was responsible for generating systemic inflammatory processes with significantly increased levels of pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a and coa1) mRNA markers, with a pattern similar to those observed in COVID-19 cases in humans. On the other hand, PBM treatment was able to decrease the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most-impacted metabolic pathways between PBM and the rSpike treated groups were related to steroid metabolism, immune system, and lipid metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19 and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials can commence.


Assuntos
COVID-19 , Animais , Humanos , Peixe-Zebra/metabolismo , SARS-CoV-2/metabolismo , Síndrome da Liberação de Citocina , Citocinas/metabolismo , RNA Mensageiro , Proteínas de Membrana , Proteínas Mitocondriais
8.
Genomics ; 115(3): 110598, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906188

RESUMO

Muscle growth in teleosts is a complex biological process orchestrated by numerous protein-coding genes and non-coding RNAs. A few recent studies suggest that circRNAs are involved in teleost myogenesis, but the molecular networks involved remain poorly understood. In this study, an integrative omics approach was used to determine myogenic circRNAs in Nile tilapia by quantifying and comparing the expression profile of mRNAs, miRNAs, and circRNAs in fast muscle from full-sib fish with distinct growth rates. There were 1947 mRNAs, 9 miRNAs, and 4 circRNAs differentially expressed between fast- and slow-growing individuals. These miRNAs can regulate myogenic genes and have binding sites for the novel circRNA circMef2c. Our data indicate that circMef2c may interact with three miRNAs and 65 differentially expressed mRNAs to form multiple competing endogenous RNA networks that regulate growth, thus providing novel insights into the role of circRNAs in the regulation of muscle growth in teleosts.


Assuntos
Ciclídeos , MicroRNAs , Animais , RNA Circular/genética , Ciclídeos/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Músculos/metabolismo , Redes Reguladoras de Genes
10.
An. R. Acad. Nac. Farm. (Internet) ; 88(número extraordinario): 113-116, diciembre 2022. tab
Artigo em Espanhol | IBECS | ID: ibc-225760

RESUMO

La resistencia a los antibióticos aumenta la búsqueda de nuevas estrategias para combatir las enfermedades que causan, y el uso de plantas medicinales representa una estrategia altamente efectiva y valiosa, como el uso de Tagetes lucida con diferentes bacterias gram positivas y gram negativas.Objetivo: Evaluar la actividad biológica que tiene el extracto hexanico de la planta Tagetes lucida a diferentes concentraciones sobre la inhibición del crecimiento en placa y tubo de dos enterobacterias, Shigella flexneri y Salmonella typhiMétodos: En el siguiente trabajo, se evaluó un extracto de hexano de Tagetes lucida sobre la inhibición del crecimiento de dos enterobacterias, Shigella flexneri y Salmonella typhi utilizando diferentes concentraciones de vehículo para evaluar si afectaba el crecimiento bacteriano y también diferentes concentraciones de extracto para evaluar la actividad.Resultados: Realizados los estudios por triplicado se logró concretar que a partir de 75µl/µg de extracto se logra una inhibición casi total del crecimiento de ambas bacterias, tanto en método de placa, como en método de tubo. Y a partir de 100 µl/µg se logra una inhibición total.Conclusiones: Los resultados favorables obtenidos con 75 µl/µg, permiten confirmar que los extractos de plantas medicinales son una estrategia importante para combatir infecciones bacterianas multi-resistentes. Por otro lado permite dar paso a un estudio para evaluar los metabolitos más activos del extracto, así como, el mecanismo de acción sobre la inhibición del crecimiento de las bacterias en estudio. (AU)


Antibiotic resistance increases the search for new strategies to combat the diseases they cause, and the use of medicinal plants represents a highly effective and valuable strategy, such as the use of Tagetes lucida with different gram positive and gram negative bacteria.Objective: To evaluate the biological activity of the hexane extract of the Tagetes lucida plant at different concentrations on the inhibition of growth in plaque and tube of two enterobacteriaceae, Shigella flexneri and Salmonella typhiMethods: In the following work, a hexane extract from Tagetes lucida was evaluated on the growth inhibition of two enterobacteriaceae, Shigella flexneri and Salmonella typhi using different concentrations of vehicle to evaluate if it affected bacterial growth and also different concentrations of extract to evaluate activity.Results: Once the studies were carried out in triplicate, it was possible to specify that from 75µl/µg of extract, almost total inhibition of the growth of both bacteria was achieved, both in the plate method and in the tube method. And from 100 µl/µg total inhibition is achieved.Conclusions: The favorable results obtained with 75 µl/ µg, confirm that medicinal plant extracts are an important strategy to combat multi-drug resistant bacterial infections. On the other hand, it allows a study to be carried out to evaluate the most active metabolites of the extract, as well as the mechanism of action on the inhibition of the growth of the bacteria under study. (AU)


Assuntos
Fatores R , Antibacterianos , Resistência a Medicamentos , Plantas Medicinais , Enterobacteriaceae
11.
An. R. Acad. Nac. Farm. (Internet) ; 88(número extraordinario): 123-130, diciembre 2022. tab
Artigo em Inglês | IBECS | ID: ibc-225694

RESUMO

Objetive: Description of the different isolated microorganisms and their prevalence in infections associated with health care, in addition to determining their patterns of resistance to antibiotics in patients admitted with a confirmed or suspected diagnosis of COVID-19 in the Intensive Care Unit, during a third-level medical center with hospital reconversion.Method: Patient demographic data was obtained from the clinical record, with defined criteria. Antibiotic resistance patterns were evaluated as well as the identification of isolated bacteria in cultures of expectoration, pleural fluid, catheter tips. For bacterial identification and resistance mechanisms, automated equipment and phenotypic tests were used, following the CLSI (Clinical & Laboratory Standards Institute) criteria.Results: A total of 100 patients with bacterial infection added to the main COVID-19 picture were obtained, representing pneumonia, urinary tract infection, catheter infections and bacteremia. A total of 100 strains were isolated, of which 84 are Extremely Drug Resistant, 12 Multidrug Resistant and only 4 variable sensitivity. The bacteria with the highest prevalence is Staphylococcus aureus with, followed by Pseudonomas aeruginosa and Stenotrophomonas maltophilia. 100% of the patients admitted to the ICU (Intensive Care Unit) had death.Conclusion: The increase in resistance to antibiotics in the COVID-19 pandemic has set off alarms due to the complication that this brings, and the improper use of drugs as prophylaxis or attempted treatment only generates selective pressure that leads to an increase in resistance as observed in the isolated strains in this study, where the vast majority present enzymes as well as other resistance mechanisms that confer them to be XDR (Extremely Drug Resistant). (AU)


Objetivo: Descripción de los diferentes microorganismos aislados y su prevalencia en infecciones asociadas a la atención de la salud, además de determinar sus patrones de resistencia a antibióticos en pacientes ingresados con diagnóstico confirmado o sospechado de COVID-19 en la Unidad de Cuidados Intensivos, en Centro médico de tercer nivel con reconversión hospitalaria.Método: Los datos demográficos de los pacientes se obtuvieron de la historia clínica, con criterios definidos. Se evaluaron patrones de resistencia a antibióticos, así como la identificación de bacterias aisladas en cultivos de expectoración, líquido pleural, puntas de catéter. Para la identificación bacteriana y los mecanismos de resistencia se utilizaron equipos automatizados y pruebas fenotípicas, siguiendo los criterios del CLSI (Clinical & Laboratory Standards Institute).Resultados: Se estudió un total de 100 pacientes con infección bacteriana sumado al cuadro principal de COVID-19, de los cuales representó neumonía, infección de vías urinarias, infecciones de catéter y bacteriemia. Se aislaron un total de 100 cepas, de las cuales 84 son Extremadamente Resistentes, 12 Multirresistentes y solo 4 de sensibilidad variable. La bacteria con mayor prevalencia es Staphylococcus aureus, seguida de Pseudonomas aeruginosa y Stenotrophomonas maltophilia. El 100% de los pacientes ingresados en UCI (Unidad de Cuidados Intensivos) tuvieron muerte.Conclusión: El aumento de las resistencias a los antibióticos en la pandemia de COVID-19 ha hecho saltar las alarmas por la complicación que esto trae consigo, y el uso inadecuado de fármacos como profilaxis o intento de tratamiento solo genera una presión selectiva que conduce a un aumento de las resistencias como se observa en las cepas aisladas en este estudio, donde la gran mayoría presenta enzimas así como otros mecanismos de resistencia que les confieren ser XDR (Extremadamente Resistente). (AU)


Assuntos
Humanos , 50230 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Infecções por Coronavirus/epidemiologia , Infecção Hospitalar , Unidades de Terapia Intensiva
12.
Front Immunol ; 13: 1019201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248846

RESUMO

Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.


Assuntos
Leucócitos , Proteoma , Peixe-Zebra , Proteínas de Fase Aguda , Animais , Carragenina/metabolismo , Glicosaminoglicanos , Humanos , Inflamação/induzido quimicamente , Neutrófilos/metabolismo , Plasma/metabolismo , Proteômica , Peixe-Zebra/metabolismo
13.
Genes (Basel) ; 13(10)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36292743

RESUMO

Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feeding; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake ecological form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as "genomic islands of divergence". Moreover, the Tajima's D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine ecological forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait-osmoregulation.


Assuntos
Adaptação Fisiológica , Lagos , Animais , Adaptação Fisiológica/genética , Oceano Pacífico , Genômica
14.
Front Genet ; 13: 863547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092944

RESUMO

Interspecific hybridization has occurred relatively frequently during the evolution of vertebrates. This process usually abolishes reproductive isolation between the parental species. Moreover, it results in the exchange of genetic material and can lead to hybridogenic speciation. Hybridization between species has predominately been observed at the interspecific level, whereas intergeneric hybridization is rarer. Here, using whole-genome sequencing analysis, we describe clear and reliable signals of intergeneric introgression between the three-spined stickleback (Gasterosteus aculeatus) and its distant mostly freshwater relative the nine-spined stickleback (Pungitius pungitius) that inhabit northwestern Russia. Through comparative analysis, we demonstrate that such introgression phenomena apparently take place in the moderate-salinity White Sea basin, although it is not detected in Japanese sea stickleback populations. Bioinformatical analysis of the sites influenced by introgression showed that they are located near transposable elements, whereas those in protein-coding sequences are mostly found in membrane-associated and alternative splicing-related genes.

16.
Fish Shellfish Immunol ; 124: 244-253, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421573

RESUMO

Bacillus spp. supplementation as probiotics in cultured fish diets has a long history of safe and effective use. Specifically, B. velezensis show great promise in fine-tuning the European sea bass disease resistance against the pathogenicity caused by several members of the Vibrio family. However, the immunomodulatory mechanisms behind this response remain poorly understood. Here, to examine the inherent immune variations in sea bass, two equal groups were fed for 30 days with a steady diet, with one treatment supplemented with B. velezensis. The serum bactericidal capacity against live cells of Vibrio anguillarum strain 507 and the nitric oxide and lysozyme lytic activities were assayed. At the cellular level, the phagocytic response of peripheral blood leukocytes against inactivated Candida albicans was determined. Moreover, head-kidney (HK) total leukocytes were isolated from previously in vivo treated fish with LPS of V. anguillarum strain 507. Mechanistically, the expression of some essential proinflammatory genes (interleukin-1 (il1b), tumor necrosis factor-alpha (tnfa), and cyclooxygenase 2 (cox2) and the sea bass specific antimicrobial peptide (AMP) dicentracin (dic) expressions were assessed. Surprisingly, the probiotic supplementation significantly increased all humoral lytic and cellular activities assayed in the treated sea bass. In addition, time-dependent differences were observed between the control and probiotic treated groups for all the HK genes markers subjected to the sublethal LPS dose. Although the il1b was the fastest responding gene to a significant level at 48 h post-injection (hpi), all the other genes followed 72 h in the probiotic supplemented group. Finally, an in vivo bacteria challenge against live V. anguillarum was conducted. The probiotic fed fish observed a significantly higher survival. Overall, our results provide clear vertical evidence on the beneficial immune effects of B. velezensis and unveil some fundamental immune mechanisms behind its application as a probiotic agent in intensively cultured European sea bass.


Assuntos
Bacillus , Bass , Doenças dos Peixes , Vibrioses , Animais , Suplementos Nutricionais , Resistência à Doença , Lipopolissacarídeos , Vibrio , Vibrioses/veterinária
18.
An. R. Acad. Nac. Farm. (Internet) ; 88(2): 123-130, abr-jun 2022. tab
Artigo em Inglês | IBECS | ID: ibc-206552

RESUMO

Objetive: Description of the different isolated microorganisms and their prevalence in infections associated with health care, in addition to determining their patterns of resistance to antibiotics in patients admitted with a confirmed or suspected diagnosis of COVID-19 in the Intensive Care Unit, during a third-level medical center with hospital reconversion. Method: Patient demographic data was obtained from the clinical record, with defined criteria. Antibiotic resistance patterns were evaluated as well as the identification of isolated bacteria in cultures of expectoration, pleural fluid, catheter tips. For bacterial identification and resistance mechanisms, automated equipment and phenotypic tests were used, following the CLSI (Clinical & Laboratory Standards Institute) criteria. Results: A total of 100 patients with bacterial infection added to the main COVID-19 picture were obtained, representing pneumonia, urinary tract infection, catheter infections and bacteremia. A total of 100 strains were isolated, of which 84 are Extremely Drug Resistant, 12 Multidrug Resistant and only 4 variable sensitivity. The bacteria with the highest prevalence is Staphylococcus aureus with, followed by Pseudonomas aeruginosa and Stenotrophomonas maltophilia. 100% of the patients admitted to the ICU (Intensive Care Unit) had death. Conclusion: The increase in resistance to antibiotics in the COVID-19 pandemic has set off alarms due to the complication that this brings, and the improper use of drugs as prophylaxis or attempted treatment only generates selective pressure that leads to an increase in resistance as observed in the isolated strains in this study, where the vast majority present enzymes as well as other resistance mechanisms that confer them to be XDR (Extremely Drug Resistant).(AU)


Objetivo: Descripción de los diferentes microorganismos aislados y su prevalencia en infecciones asociadas a la atención de la salud, además de determinar sus patrones de resistencia a antibióticos en pacientes ingresados con diagnóstico confirmado o sospechado de COVID-19 en la Unidad de Cuidados Intensivos, en Centro médico de tercer nivel con reconversión hospitalaria. Método: Los datos demográficos de los pacientes se obtuvieron de la historia clínica, con criterios definidos. Se evaluaron patrones de resistencia a antibióticos, así como la identificación de bacterias aisladas en cultivos de expectoración, líquido pleural, puntas de catéter. Para la identificación bacteriana y los mecanismos de resistencia se utilizaron equipos automatizados y pruebas fenotípicas, siguiendo los criterios del CLSI (Clinical & Laboratory Standards Institute). Resultados: Se estudió un total de 100 pacientes con infección bacteriana sumado al cuadro principal de COVID-19, de los cuales representó neumonía, infección de vías urinarias, infecciones de catéter y bacteriemia. Se aislaron un total de 100 cepas, de las cuales 84 son Extremadamente Resistentes, 12 Multirresistentes y solo 4 de sensibilidad variable. La bacteria con mayor prevalencia es Staphylococcus aureus, seguida de Pseudonomas aeruginosa y Stenotrophomonas maltophilia. El 100% de los pacientes ingresados en UCI (Unidad de Cuidados Intensivos) tuvieron muerte. Conclusión: El aumento de las resistencias a los antibióticos en la pandemia de COVID-19 ha hecho saltar las alarmas por la complicación que esto trae consigo, y el uso inadecuado de fármacos como profilaxis o intento de tratamiento solo genera una presión selectiva que conduce a un aumento de las resistencias como se observa en las cepas aisladas en este estudio, donde la gran mayoría presenta enzimas así como otros mecanismos de resistencia que les confieren ser XDR (Extremadamente Resistente).(AU)


Assuntos
Humanos , Coronavirus , Infecção Hospitalar , Resistência Microbiana a Medicamentos , Uso Indevido de Medicamentos sob Prescrição/efeitos adversos
19.
Front Immunol ; 12: 742827, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721409

RESUMO

In fish culture settings, the exogenous input of steroids is a matter of concern. Recently, we unveiled that in the gilthead seabream (Sparus aurata), the G protein-coupled estrogen receptor agonist G-1 (G1) and the endocrine disruptor 17α-ethinylestradiol (EE2) are potent modulators in polyreactive antibody production. However, the integral role of the microbiota upon immunity and antibody processing in response to the effect of EE2 remains largely unexplored. Here, juvenile seabreams continuously exposed for 84 days to oral G1 or EE2 mixed in the fish food were intraperitoneally (i.p.) immune primed on day 42 with the model antigen keyhole limpet hemocyanin (KLH). A critical panel of systemic and mucosal immune markers, serum VTG, and humoral, enzymatic, and bacteriolytic activities were recorded and correlated with gut bacterial metagenomic analysis 1 day post-priming (dpp). Besides, at 15 dpp, animals received a boost to investigate the possible generation of specific anti-KLH antibodies at the systemic and mucosal interphases by the end of the trial. On day 43, EE2 but not G1 induced a significant shift in the serum VTG level of naive fish. Simultaneously, significant changes in some immune enzymatic activities in the serum and gut mucus of the EE2-treated group were recorded. In comparison, the vaccine priming immunization resulted in an attenuated profile of most enzymatic activities in the same group. The gut genes qPCR analysis exhibited a related pattern, only emphasized by a significant shift in the EE2 group's il1b expression. The gut bacterial microbiome status underwent 16S rRNA dynamic changes in alpha diversity indices, only with the exposure to oral G1, supporting functional alterations on cellular processes, signaling, and lipid metabolism in the microbiota. By the same token, the immunization elevated the relative abundance of Fusobacteria only in the control group, while this phylum was depleted in both the treated groups. Remarkably, the immunization also promoted changes in the bacterial class Betaproteobacteria and the estrogen-associated genus Novosphingobium. Furthermore, systemic and mucosal KLH-specific immunoglobulin (Ig)M and IgT levels in the fully vaccinated fish showed only slight changes 84 days post-estrogenic oral administration. In summary, our results highlight the intrinsic relationship among estrogens, their associated receptors, and immunization in the ubiquitous fish immune regulation and the subtle but significant crosstalk with the gut endobolome.


Assuntos
Etinilestradiol/toxicidade , Microbioma Gastrointestinal/imunologia , Receptores de Estrogênio/imunologia , Receptores Acoplados a Proteínas G/imunologia , Dourada/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Disruptores Endócrinos/toxicidade , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Hemocianinas/imunologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Dourada/metabolismo , Vacinação
20.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638776

RESUMO

Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity often induces the modulation of a variated collection of immune responses within several types of immunocytes while promoting specific mechanisms of bacterial clearance. However, to achieve standardized treatments at the practical level and avoid possible side effects in cultivated fish, several improvements in the understanding of their biology and the associated genomes are required. Interestingly, a particular feature with therapeutic potential among all phages is the production of lytic enzymes. The use of such enzymes against human and livestock pathogens has already provided in vitro and in vivo promissory results. So far, the best-understood phages utilized to fight against either Gram-negative or Gram-positive bacterial species in fish culture are mainly restricted to the Myoviridae and Podoviridae, and the Siphoviridae, respectively. However, the current functional use of phages against bacterial pathogens of cultured fish is still in its infancy. Based on the available data, in this review, we summarize the current knowledge about phage, identify gaps, and provide insights into the possible bacterial control strategies they might represent for managing aquaculture-related bacterial diseases.


Assuntos
Infecções Bacterianas/terapia , Myoviridae , Terapia por Fagos , Podoviridae , Siphoviridae , Animais , Infecções Bacterianas/virologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...